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The electrostatic screening of nuclear reaction -
present status
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Abstract. We review the present state of the weak electrostatic screening theory of nuclear
reactions in dense astrophysical plasma of Main Sequence stars.
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1. Introduction

In the 2001 Vulcano conference, we reported
(Shaviv & Shaviv, 2001b, S&S) on the ongo-
ing controversy about the proper treatment of
the screening of nuclear reactions in stellar
plasma in general, and in the Sun in particular.
The discussion about the screening continued
for a while. However, recently, Mussack et al.,
(2007) and Mao et al., (2009) checked the as-
sumptions of Shaviv & Shaviv, (2001a) (here-
after SS01) and confirmed their validity, as
well as the basic physical results. Effectively,
this puts an end to the controversy and opens a
new era in the calculations of the screening in
stars. In view of this development, we summa-
rize here the involved physics and report nu-
merical results for the screening of nuclear re-
actions.

The effect of the screening of nuclear re-
actions is based on the classical Debye-Hückel
(DH) theory. Each positive ion in the plasma is
surrounded with a cloud of negative and posi-
tive ions, creating an effective neutralizing po-
tential of the form exp(−r/RD)/r, where RD is
the Debye radius. Thus, each ion in the plasma
is immersed in a neutralizing cloud.

In liquid electrolytes, for which the DH
theory was developed, the number of particles
within the Debye sphere is very large and a
mean field description is valid. However, the
conditions inside Main Sequence stars imply
that the number of particles (ions or electrons)
is only a few, and the necessary condition for a
mean field description is not satisfied.

The relevant particles for the nuclear reac-
tions are in the Gamow peak, which as a rule
is at an energy greater than kT (e.g., 5kT for
the pp-chain, and 15− 20kT for higher Z reac-
tions). Thus, the colliding particles are gener-
ally much faster than the speed of the thermal
particles comprising the Debye cloud.

Salpeter, (1954) assumed the so called
weak screening limit, which corresponds to the
DH mean field theory, and stated the approxi-
mations involved. In fact, Salpeter, (1954) has
already stressed the points raised here. The fol-
lowing questions arise:

– If no nuclear reaction takes place, then the
extra energy gained must be returned to the
plasma. How can this happen when the soft
Debye cloud contains just a few particles?

– The negative electrons are even faster than
the fast ions in the Gamow peak, while the
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positive ions are slower. What is the effect
of the net polarization during the collision?

– How could a Debye neutralizing sphere
that is composed of thermal particles
screen a particle which is faster than all of
them?
In summary, the collision between fast par-

ticles takes a shorter time than the classical
relaxation time for the Debye cloud. Is mean
field description valid on this short time scale?

S&S raised exactly these questions and
claimed that indeed, the mean field description
is not appropriate under these conditions, and
consequently, the Salpeter theory for screening
requires modifications. S&S proposed to ad-
dress the problem using Molecular Dynamics,
an “ab initio” method which bypasses the ques-
tion of basic assumptions.

The problem of the weak electro-
static screening of nuclear reactions was
shrouded in uncertainty. The results of S&S
were challenged by Brueggen & Gough,
(1997), Gruzinov & Bahcall, (1998) and
Bahcall et al., (1998), who published a series
of papers claiming the correctness of the
Salpeter weak screening limit under solar
conditions.

The second question was raised by
Carraro et al., (1988) who pointed out that the
potential energy of a particle moving with the
Gamow energy is not identical to the poten-
tial energy of a thermal particle and hence the
screening should be reduced. It can be shown
that the above authors essentially assumed a
particle with an infinite mass and hence ig-
nored the back reaction from the plasma on the
particle. In other words, the thermal particles in
the cloud cannot relax sufficiently fast during a
collision of faster than thermal particles.

Recently, Bahcall et al., (2002, BBGS)
discussed the Salpeter formula for calculating
the electrostatic screening of nuclear reactions
in plasma and argued to have shown that it
should apply to the Sun and that all claims con-
cerning dynamic effects are wrong, including
the recent results of SS01. The discussion of
BBGS is based on thermodynamics and statis-
tical mechanics in which the mean field elec-
trostatic potential is assumed. Further, the au-
thors assume that two interacting ions always

gain energy from the plasma, as the particles
approach each other. This additional energy,
the screening energy, is taken to be just the
mean field potential of the ions in the plasma,
namely, the long time average (the thermody-
namic time - much longer than a typical col-
lision) of the potential felt by an ion in the
plasma. As the particles move apart the tacit
assumption is that this extra energy is exactly
returned to the plasma.

The source of the problem to our mind,
is the confusion between the static and long
time averaged behavior and the dynamic be-
havior of dense plasma. BBGS are in the idea
that the screening problem is a static one while
we claim that under the conditions in the Sun,
it is a dynamic one, and should be treated as
such. In Sahrling (1994) words, the classical
Salpeter theory assumes “the approximation
that the ions in the screening cloud are always
fully relaxed” (See also Salpeter, 1954).

SS01 have shown how to obtain the screen-
ing energy from first principles using ab ini-
tio Molecular Dynamics (hereafter MD). SS01
carried out extensive MD simulations that
show that on the average, particles with low
relative energy gain energy from the plasma
when they scatter off each other, while particles
with high relative energy lose on the average
energy to the plasma, as they scatter. The sum
of the exchange over all particles vanishes in
equilibrium. SS01 showed the connection be-
tween the screening and the dynamic friction
in the system.

The enhancement of nuclear reactions in
plasma involves the fundamental physics of
particles collisions in plasma. Frequently the
effect of the surrounding particles is summed
into a mean field.

– Can we treat this field as a rigid field at-
tached to the particles, such that the parti-
cles effectively scatter off each other with a
revised central potential?

– How far can the collision between two par-
ticles be considered as a binary collision,
while ignoring non central effects which
cause a change in the motion of the center
of mass?
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– To what extent does the condition of parti-
cles within a plasma in equilibrium affects
the collisions?

The above, as well as other similar questions,
are connected to the relaxation process in the
plasma, and the rate enhancement cannot be
separated from these questions.

To demonstrate the physics, we start with
a simple case of a single specie but a mod-
ified Coulomb potential which takes into ac-
count the screening by the electrons. The sim-
ple model allows the understanding of the col-
lision mechanism in a gas in thermal equilib-
rium but with few particles in the screening
cloud. Once we demonstrate the effect in a sim-
plified case, we turn to the actual plasma and
(1) Infer the critical properties of the collisions
between plasma particles, (2) Define again the
screening energy, (3) Discuss typical results
and (4) Compare with the classical Salpeter re-
sult.

2. The conditions in the Sun

The necessary condition for the Debye mean
field theory to be valid is that ND =
(4π/3)neR3

D � 1 where ne in the number den-
sity of electrons and RD is the Debye radius. In
the case of the Sun we find that ND ∼ 2 − 3,
namely the number of particles in a Debye
sphere is small. Landau & Lifshitz, (1958) p
231 expressed it as follows: The Debye-Hückel
radius must be large compared with the dis-
tance between ions. They also point out that
this condition is equivalent to assuming that the
Coulomb potential energy is small.

3. A simple demonstration of the
physics

In view of the complexity of the problem and
the mixing of internal relaxation processes in
the gas with the screening phenomenon, we run
a set of simple minded cases in which we con-
trol the interaction length or radius of neutral-
ization Rn. By varying Rn we can see how the
relaxation process and the screening change.

3.1. The neutralization radius idea

Wolf et al., (1999) developed the idea of a
neutralization radius to overcome the problem
of truncated Coulomb potential and in an at-
tempt to avoid the lengthy Ewald sum calcula-
tions. Here we borrow the same idea to see how
the screening comes into play in a system of in-
teracting particles. To this goal, we assume the
effective binary potential to be given by:

V(r) =

{ 1/r + r/R2
n − 2/R2

n for r < Rn
0 for ≥ Rn

(1)

and the force is given by:

f (r) =

{ 1/r2 − 1/R2
n for r < Rn

0 for ≥ Rn
(2)

where Rn is the neutralization radius and is
taken here as a free parameter. Clearly, when
Rn → 0 we get a short range force and in prin-
ciple, no screening is expected.

The fundamental processes taking place in
the plasma are seen in fig. 1. 〈∆E(E)〉 is the
mean energy exchange between a particle with
energy E and the plasma. The curves ′down′
and ′up′ give the probability for the particle
to lose or gain energy, respectively. n(E) is the
number of particles in the energy bin. We see
that energetic particles have a higher probabil-
ity to lose energy in a binary collision and vice
versa.

We turn now to the mean potential energy
of particles with a given kinetic energy. In fig. 2
and 3 we show the results for Rn = 0.4 〈r〉 and
for Rn = 0.8 〈r〉, where 〈r〉 is the mean inter-
particle distance. The figures show that the po-
tential energy at the classical turning point is a
function of the relative kinetic energy and ex-
hibits a fast rise for very slow encounters.

3.2. The distribution of the potential
energy of particles

The number of particles in a Debye sphere is
given by:

ND =
4π
3

neR3
D; RD ≈ 6.9

√
kT
ne
. (3)

This expression assumes that both the electrons
and the ions contribute to the Debye potential.
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Fig. 1. The dynamic friction in the plasma.
Energetic particles mainly lose energy in collisions
and low energy particles gain energy. 〈∆E(E)〉 is the
average energy change in the E energy bin.
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Fig. 2. The screening and ensemble mean poten-
tial felt by particles with given relative kinetic en-
ergy at the classical turning point. The arrow marks
the ensemble mean potential felt by a particle in the
system. Here Rn = 0.4 〈r〉.

and the plasma contains only trace amounts
of heavy elements. Assuming pure Hydrogen
plasma, ne = 1026 and T = 1.5 × 107K we
find that in the core of the Sun RD = 0.877 〈r〉
where 〈r〉 = n−1/3

ion and ND = 2.83. Actually,
equating ND to unity yields a condition on the
number density of electron below which the
mean field theory of the Debye cloud is cer-
tainly not valid. The conditions at the centers of
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Fig. 3. The screening and ensemble mean poten-
tial felt by particles with given relative kinetic en-
ergy at the classical turning point. The arrow marks
the ensemble mean potential felt by a particle in the
system. Here Rn = 10 〈r〉.
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Fig. 4. The ensemble mean potential and the mean
screening energy at the Gamow peak for the pp re-
action as a function of the interaction rang. Here
C f = 1.

Main sequence stars fall very close to this con-
dition. Alternatively, one can implement the
condition given by Landau & Lifshitz, (1958,
p. 230), namely,

�
(

kT
z2e2

)3

, (4)



Giora Shaviv: Screening 81

where z is the mean atomic change of the ions.
In fig. 4 we see how the mean field limit,

where ND → ∞ is obtained as Rn increases.
The open circles are the results obtained ap-
plying the mean field (even with a too small
number of particle, while the full circles show
the results obtained for relatively small values
of Rn, for which the mean field is not expected
to be valid. The difference in the potential en-
ergy is in this case about a factor of four.

As the distribution function of the parti-
cles is FN ∝ exp(−Σi jφi j/kT ), where φi j is
the Coulomb interaction between two parti-
cles, one expects that the potential energy of
the single particle will have also a distribution
(in contrast to a constant value). Namely, not
all particles have the same potential energy.
The Salpeter’s approximation assumes a con-
stant Epot. Indeed, in fig. 5 we show the po-
tential energy distribution in equilibrium (af-
ter more than 50 dynamic time scales) found
in a snap shot. The width of the distribution
is proportional to 1/

√
ND which in the present

case is slightly less than unity. According to
Ginzburg, (1960), the fact that the distribu-
tions have a significant width (due to the small
number of particles giving rise to the potential)
means that fluctuations are large the mean field
is not a good approximation in this case. (cf.
Landau & Lifshitz, 1958)

4. A simple definition of the
screening

The Molecular Dynamic method allowed us to
define the screening energy in a simple and
clear way.

Let Etot−L, f
i be the total energy of particle

i when it is moving in the plasma and Etot−L,c
i

the total energy when it reaches the distance of
closest approach during the scattering off par-
ticle j. The screening energy is then given by:

Ei,scr = Etot−L,c
i − Etot−L, f

i , (5)

where the total energy of the particle in given
by

Etot,L
i = Ekin

i +
∑

k,i

φ(i, k) +
1
2
φ(i, j), (6)
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Fig. 5. The distribution of the potential energy
among the particles for Rn > 1. (Obtained in a snap
shot calculated over all particles irrespective of their
particular dynamic state).

namely, the kinetic energy plus all the potential
interactions between all pairs plus the specific
interaction between the scattering pair. Here all
energies are evaluated in the laboratory. The
screening energy is the energy gained/lost by
the scattered proton as it moves from far away
to the distance of closest approach. This def-
inition is very close to the original definition
given by Salpeter, (1954) to the screening en-
ergy. (cf. Salpeter, (1954) eq. 2, where the ex-
pression for the energy is given essentially in
the center of mass system). It is equally sim-
ple to define the screening energy in the center
of mass system of the two scattering particles.
However, as in the next section we solve the
equations in the laboratory system, we use here
a definition in the laboratory system.

Other definitions exist as well. For exam-
ple, Ichimaru, (1994) defines the screening po-
tential as follows: Let W(r) be the potential
between a pair of particles in vacuum and let
g(r) be the pair distribution function, then the
screening potential (or interaction potential) is
given by:

Hint(r) = W(r) +
1
β

ln g(r), (7)
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0.00 0.05 0.10 0.15 0.20 0.25 0.30
10-4

10-3

10-2

10-1

Epot / kT

n(
E

po
t/

kT
)

Rn=0.8 < r >

cf

Fig. 7. The potential energy distribution for Rn =

0.8 〈r〉. The letters f and c imply far and close (at
the classical turning point). The arrow marks the en-
semble mean.

where β = 1/kT . Again, this definition can by
applied provided the mean field approximation
is valid.

The MD code was adapted to calculate
the screening using the above definition. The
scattering particles are first identified and then
followed to the distance of closest approach,
where all the dynamic quantities are regis-
tered. Then the moving away pair is followed
till a point which is few Debye lengths away.
Checks about the actual point where to declare
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Fig. 8. The ratio of the new screening enhancement
factor as a function of the range of the potential for
two values of the potential strength.

the pair as “far away— were carried out and
we found that 3-4 Debye lengths are sufficient.
One can follow the pair to a longer distance
at the cost of a larger scatter in the results. In
all cases we require that the distance of closest
approach be smaller than 1/2 〈r〉. Hence, very
low energy particles are ignored.

The polarization of the screening shielding
cloud is nicely seen in fig. 7, where the rela-
tive potential energy between the colliding par-
ticles is shown when they are far away ( f ) and
when they are at the classical turning point (c).
The arrow marks the ensemble average value.

In fig. 6 we show the results for the screen-
ing energy as a function of the relative kinetic
energy at maximum separation for several val-
ues of Rn. It is obvious that the effect (the vari-
ation with relative kinetic energy) is largest for
small Rn and diminishes as Rn increases. The
non linearity of the effect is shown in fig. 8,
where Escr,present/Escr,S alpeter is depicted as a
function of Rn for two values of the strength
of the interaction.

It is interesting to consider what happens
to the energy of the center of mass during the
scattering process, namely ECM = 2mpv2

CM ,
where mp is the proton mass and vCM is the
velocity of the center of mass. If the scatter-
ing would have been via a central force, then
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the energy of the center of mass should be con-
served. The average change in ECM squared is
shown in fig. 9 as a function of the relative ki-
netic energy.

The change in ECM tends to zero. The con-
clusion is that three (or few) body interaction
gives rise to a change in the energy of the cen-
ter of mass of the scattering pair of particles.
Alternatively, the fluctuations in the plasma are
not spherically symmetric about the radius vec-
tor joining the two particles (they should not be
so). In fig. 10 we show the evolution of the en-
ergies during a particular scattering of two pro-
tons starting from the classical turning point at
about 0.35 〈r〉. The evolution is presented as
the function of the separation distance. Given
are the potential energy and the kinetic ener-
gies (in the laboratory) of the two particles.
The Debye radius is marked with an arrow. We
see that the potential energy fluctuates during
the scattering and the field is far from being
smooth. Note that the amplitude of the fluctua-
tions is large but because of the short time du-
ration, the total kinetic energy change of the
particles is small.

In fig. 11 we show the Fourier transform
of the potential felt by a colliding particle as
a function of time. Marked are the plasma fre-
quency and the tunneling frequency indicating

0.0 0.5 1.0 1.5 2.0
-10

0

10

20

0.0

2.0

4.0

Radial separation/<r>

E
p
o
t/
k
T

Ekin1

Ekin2

RD

Epot

E
k
in
/k
T

Fig. 10. The evolution of the potential and kinetic
energy of two colliding protons in a typical scatter-
ing. The kinetic energies are the absolute kinetic en-
ergies and the potential energy is the potential en-
ergy between the two colliding particles.
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that the potential changes during the tunneling
through the potential.

5. The screening in the real solar
plasma

The actual results for several nuclear reactions
in the solar plasma are given in tables 1 for
several compositions. The results for the pp
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screening can be aproximated by:

Fsc(X = 0) = FSal×(0.59RD+0.183)×(1±0.05).

A graphical comparison between the present
result and Salpeter’s is shown in fig. 13. In ta-
ble 2 we give the screening factor for unrealis-
tic enhanced concentrations of 7Be so that the
screening factor for the 7Be + p can be calcu-
lated. Finally, in table 5 we give the results for
an enhanced amount of 12C. The presence of
12C and a strong effect on the result. For ex-
ample the reactions 4He +3 He and 12C +12 C
are suppressed rather then enhanced. The dif-
ference in the last reaction amounts to a factor
of 84!

6. Conclusions

The particular conditions in Main Sequence
stars are such that the number of particles in
the Debye sphere is not sufficiently large and
consequently, the fundamental assumption on
which the theory of the mean field rests, is not
valid. We showed how the mean field limit is
obtained as ND → ∞.

The cloud surrounding each ion is com-
posed mainly of thermal particles while the
relevant particles for the nuclear reactions
are the fast particles in the Gamow peak.
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New Results
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1

Fig. 13. A comparison between the present result
for the pp reaction and the Salpeter’s result. Plotted
is the screening factor minus unity.

Consequently, polarization effects become im-
portant.

We showed how the method of molecular
dynamics provides a way to handle the prob-
lem.

7. DISCUSSION

Antonino del Popolo: Is the plasma in your
calculation homogenous? It is well known that
there is clustering.

Giora Shaviv: Yes, you are right. The plasma
is homogeneous on a large scale but non-
homogenous on the scale of few mean inter-
particle distances. We start the calculation with
a homogenous distribution and run it for at
least 5 relaxation times before we start our
screening calculation.

Gennadi Bisnovatyi-Kogan: How do your re-
sults influence the interpretation of the solar
neutrino experimets?

Giora Shaviv: We have to calculate the new
screening for different densities, temperatures
and compositions. Our goal is both to re-
calculate the solar neutrino and solar models,
as well as to extend the calculations to denser
plasmas relevant to thermo-nuclear-runaways
on white dwarfs. At the moment we are busy
in accelerating the calculation which takes few
months each.
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Table 1. Comparison of screening factors between the Salpeter classical screening factor (S) and
the new results (N) for T7 = 1.5

n26 X 4He 4He calc. pp 4He + p 3He + p

1.0 0.902 0.056 0.042 N 1.024 1.111 1.092
S 1.064 1.133 1.133

0.5 0.902 0.056 0.042 N 1.022 1.088 1.048
S 1.050 1.103 1.103

0.5 0.700 0.173 0.130 N 1.027 1.060 1.065
S 1.047 1.096 1.096

0.5 0.767 0.098 0.098 N 1.022 1.072 1.070
S 1.050 1.103 1.103

1.0 0.902 0.056 0.042 N 1.034 1.086 1.052
S 1.063 1.129 1.129

Table 2. Comparison of screening factors between the Salpeter classical screening factor (S) and
the new results (N) for T7 = 1.5 and enhanced 7Be

n26 X Y 7Be calc. pp 4He + p 7Be + p

0.5 0.428 0.305 0.267 N 1.027 1.091 1.297
S 1.059 1.122 1.402

1.0 0.384 0.384 0.287 N 1.038 1.083 1.338
S 1.088 1.184 1.402

Table 3. Screening factors for several reactions with composition: X = 0.573,Y = 0.214,C12 =
0.214, T7 = 1.5 and n26 = 1.

model 4He + p 12C + p 4He +4 He 12C +12 C 12C +4 He

N 0.952 1.027 0.812 0.191 0.836
S 1.167 1.588 1.361 16.03 2.521

John Beckman: Can the screening affect ele-
ment synthesis in the Big-Bang and in particu-
lar the synthesis of Lithium?

Giora Shaviv: The density in the Big-Bang at
the time the temperature is fine for the synthe-
sis of Lithium, is much lower than the density

in stars and hence, practically no screening ex-
ists in the Big-Bang nucleosynthesis.

James Beall: A comment and a question.
Comment: your screening potential is identical
to the one calculated by Rutherford for scat-
tering of α particles onto gold foil. Question:
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How does the calculation change for heavier
elements?

Giora Shaviv: Heavier elements show a
greater effect. But it all depends on the com-
position. If you have a composition rich in hy-
drogen and few heavy elements, in a collision
between the heavy particles and say the pro-
ton, the Debye cloud is composed mainly of
light protons. The situation is different when
say, most of the ions are heavy, because then
the masses of the particles are equal. Note from
the results I show in the table that for heavier
elements the effect is larger and may even be
negative. Namely, a slow down rather then en-
hancement.

Bozena Czerni: Helioseismology in principle
gives strong constraints for the temperature
profile in the sun. Do you plan to confront your
model with such data?

Giora Shaviv: When we finish the calculation
of the screening and the resulting equation of
state we are going to do just that.
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